(QE)roof = SFtransxFroof = 11.3 x 1.17k = 13.2 k (58.7KN)
(QE)floor = SFtransxFfloor = 11.3 x 0.904k = 10.2k (45.4KN)
For the moment frames with a truss;
(QE)roof = SFtransxFroof = 11.3 x 0.585k = 6.42k (28.6KN)
(QE)floor = SFtransxFfloor = 11.3 x 3.053k = 34.3k (152.6KN)
(QE)floor = SFtransxFroof adj = 11.3 x 0.475k = 5.37k (23.9KN)
Note:
In all of the following checks, the moment frame without a truss governed.
W14X26 (W355.6mmX0.38KN/m) Beam at plastic hinge location in flexure;
(QUD)worst case = 187.19ft-kips (253.8KN-m)
Q UD 187.19 ft - kips
DCR =
=
= 1.26 < 2.0 = m
O.K.
ft - kips
QCE
149
W14X34 (W355.6mmX0.50KN/m) Column in flexure;
(QUD)worst case = 220.84ft-kips (299.5KN-m)
Q UD 220.84 ft - kips
DCR =
=
= 0.94 < 1.93 = m
O.K.
ft - kips
QCE
234
W14X34 (W355.6mmX0.50KN/m) Panel zone in shear;
Mu
Q UD =
+ d haunch - t f
d beam
210.15ft - kips
= 123ft - kips (166.8KN-m)
(QUD)worst case =
13.91"+ 7"- 0.420"
Q UD 123ft - kips
DCR =
=
= 0.80 < 1.5 = m
O.K.
QCE 158ft - kips
Check Deflection;
∆ allow = 0.015hsx = 0.015(11' (12"/1' )) = 1.98" (50.3mm)
δalc = 6.375" > 1.98" = ∆ allow (161.9mm > 50.33mm)
N.G.
c
Note: High roof moment frames will have to be redesigned.
Longitudinal direction;
QE = SFlongx{Froof+Ffloor +Ftorsion} = 9.47(1.575k+3.28k+0.323k) = 9.47(5.18k) = 49.0k (218.0KN)
W14X34 (W355.6mmX0.50KN/m) Column in tension;
H4-43