Horizontal shear reinforcement will be uniformly distributed over the full height of the wall. Shear

reinforcement will consist of deformed bars, thus joint reinforcement that is in the wall to control cracking

will not be considered as shear reinforcement. The vertical spacing of shear reinforcement will not exceed

the lessor of d/2 or 48 inches. Shear reinforcement will be terminated with a standard hook or will have an

embedment length beyond the vertical reinforcing at the end of the wall panel. The hook or embedded

extension will be turned up, down, or extended horizontally. Vertical deformed bar reinforcement that is at

least equal to one-third Av will be provided in all walls requiring shear reinforcement. This vertical

reinforcement will be uniformly distributed and will not exceed a spacing of 48 inches.

through 4, the increase in the seismic shear forces required in TM 5-809-10/NAVFAC P-355/AFM 88-3,

Chapter 13 will be included.

(1) The axial stresses caused by dead and live loads from roofs and floors will be considered in design

of shear walls.

(2) The flexural stresses caused by moments from lateral in-plane shear force applied to the top of the

wall or by the diaphragm will also be consideration in design. This in-plane moment is Vh for cantilever shear

walls with fixed ends.

(3) The combined effects of axial and bending stresses must be considered. The unity equation or other

methods using accepted principles of mechanics will be used.

as a whole. Also, the proportion of the total horizontal load that is carried by a particular shear wall element

is based on the rigidity of the wall element relative the combined rigidities of all the wall elements on that

same level. The relative rigidities of shear wall elements are inversely proportional to their deflections when

loaded with a unit horizontal force. The total deflection at the top of a shear wall element is the sum of the

shear deformation and flexural deflection (Figure 7-2) plus any additional displacement that may occur due

to rotation at the base. For most shear walls in ordinary buildings, shear deformation is the major contributor

to in-plane deflection.

(1) Control joints are complete structural separations that break the shear wall into elements. The

elements must be considered as isolated structural members during shear wall rigidity analyses. The number

Integrated Publishing, Inc. |